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ABSTRACT: All software systems of significant size and longevity eventually un-
dergo changes to their basic architectural structure. Such changes may be
prompted by evolving requirements, changing technology, or other reasons.
Whatever the cause, software architecture evolution is commonplace in real-
world software projects. Recently, software architecture researchers have begun
to study this phenomenon in depth. However, this work has suffered from prob-
lems of validation; research in this area has tended to make heavy use of toy ex-
amples and hypothetical scenarios and has not been well supported by real-
world examples. To help address this problem, I describe an ongoing effort at the
Jet Propulsion Laboratory to re-architect the Advanced Multimission Operations
System (AMMOS), which is used to operate NASA’s deep-space and astrophys-
ics missions. Based on examination of project documents and interviews with
project personnel, I describe the goals and approach of this evolution effort and
then present models that capture some of the key architectural changes. Finally, I
demonstrate how approaches and formal methods from my previous research in
architecture evolution may be applied to this evolution, while using languages
and tools already in place at the Jet Propulsion Laboratory.
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1 INTRODUCTION

The discipline of software architecture, which deals with the high-level design of
software systems, has in recent decades become widely accepted as an essential means of
designing software systems effectively. However, one topic that existing approaches to
software architecture do not address well is software architecture evolution. Software architec-
ture evolution is a phenomenon that occurs in all software systems of significant size and
longevity. As a software system ages, it often needs to be structurally redesigned to accom-
modate new requirements, new technologies, or changing market conditions. In addition,
many systems over the years tend to accrue a patchwork of architectural workarounds,
makeshift adapters, and other forms of architectural detritus that compromise the architec-
tural integrity and maintainability of the system, requiring some sort of architectural over-
haul to address. At present, however, software architects have few tools to help them plan
and carry out these kinds of architecture evolution. While there is a sizeable body of research
literature on software maintenance and evolution generally, little work has been devoted to
this common problem of architecture evolution.

In my research as a doctoral student at Carnegie Mellon University, I have attempted
to address this gap in the research. Along with my research advisor and other colleagues, 1
have been studying the phenomenon of software architecture evolution and developing
methods and models to support architects in planning such evolutions [7]. Our approach is
based on capturing architectural expertise about classes of evolutions and developing tools
to facilitate reuse of this expertise.

One significant obstacle in our research thus far, as well as that of other researchers
working in the same area [21, 22, 26], has been the challenge of validation. Although we have
made considerable headway in the task of developing a theory of architecture evolution,
finding real-world cases on which to test our model has been a challenge. Most of our work
so far, therefore, has been based on toy examples, artificial evolutions in laboratory condi-
tions, and low-fidelity formalizations of real-world examples of which we have a general
description but no detailed knowledge.

This summer, during a ten-week internship at NASA’s Jet Propulsion Laboratory
(JPL), I undertook a case study of software architecture evolution. JPL is currently in the
process of carrying out a major evolution of an important software system. By examining
project documents and speaking with project personnel, I gained an understanding of this
evolution. Then, I applied the methods we had developed in our research to the problem of
analyzing certain aspects of this evolution. I constructed a formal model of the evolution
plan and demonstrated how our research approach could be applied in a real-world engi-
neering context, while using languages and tools already in place at JPL. In this report, I give
an overview of this work.

Section 2 describes our approach to software architecture evolution in greater detail
and then discusses the context of evolution at JPL. Section 3 describes the specific evolution
that I modeled during my internship. Section 4 explains how I applied our evolution analysis
approach to this evolution. Section 5 summarizes the results of this effort. Section 6 con-
cludes by considering what lessons may be drawn from the case study. Note also that a
glossary of abbreviations is provided as an appendix on page 19.

Jeffrey M. Barnes 2 Project Report



2 BACKGROUND

2.1 Software Architecture

Software architecture is the subdiscipline of software engineering that pertains to the
high-level design of software systems. In the last fifteen years or so, a great deal of progress
has been made in developing techniques that help software engineers to effectively design
software systems to meet functional and quality goals; to document software systems in a
way that is useful to their stakeholders; and to apply formal methods (i.e., techniques
grounded in mathematics and formal logic) to the analysis of software architectures to
understand their properties.

Software architects represent software systems in terms of the high-level elements
from which they are made, often using architecture description languages specifically designed
for representing software architectures. The most important kinds of architectural elements
are components (the computational elements and data stores of a system) and connectors (the
interaction pathways among components) [2]. At the most basic level, a software architec-
ture can be thought of as a graph (in the sense of graph theory) in which the nodes are
components and the vertices are connectors. In practice, architectural descriptions are made
considerably more complex by the addition of other kinds of architectural elements (such as
ports, which are the interfaces by which one may interact with a component); the annotation
of architectural elements with properties to facilitate analysis; and other intricacies. In
addition, software architects often consider a system from multiple viewpoints —not only the
run-time component-and-connector view, but also (for example) views of the code structure
and the physical deployment of software onto hardware.

Although software architecture is a rather young field, one which is still maturing, it
has grown rapidly in importance and influence. Aside from being an active area of research,
software architecture is practiced in some form at nearly all real-world software organiza-
tions of significant size.

2.2 Software Architecture Evolution

While representing software architectures has been a fairly well understood problem
for some time now, the problem of understanding software architecture evolution is just
beginning to be explored. At Carnegie Mellon University, we have developed an approach
to understanding and modeling software architecture evolution, supported by formal
methods that lend themselves to automation [7].

We begin with the assumption that there is a known start state and a known end
state. That is, we assume that the current state of the architecture is known, as is the architec-
ture to which the organization would like to evolve. In practice, these assumptions may not
hold. However, other research areas address the problems of determining the architecture of
an existing system and designing an architecture for a future system (architecture recon-
struction and architectural design, respectively), so we do not address them. Instead, we are
concerned with how to get from the current state to the target state.

We start by contemplating the set of potential intermediate states between the initial
architecture and the target architecture —the transitional states that the system may assume
as it evolves from its initial form to its target architecture. We represent all the intermediate
states, together with the initial and target states, as nodes in a directed graph. We then draw
an edge from node a to node b if there is an evolutionary transition from state a to state b. In
addition, we allow nodes and edges to be annotated with an extensible set of architectural
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properties that further characterize the evolution. These properties support analysis of the
evolution.

This conceptual setup is fairly simple, but it accomplishes a few things. First, it al-
lows us to see the different ways that a system can evolve. In particular, it allows us to
consider the set of possible evolution paths—complete routes from the initial state to the
target state—and consider tradeoffs among them. We can also visualize things like release
points and milestones by demarcating them with node properties. This setup is also amena-
ble to various kinds of analysis.

One of the simplest kinds of analysis that can be done is the analysis of which evolu-
tion paths are possible, or legal. One of the basic elements of our model of architecture
evolution, therefore, is the notion of a path constraint, which is an analysis indicating which
paths are legal with respect to some rule about the evolution domain. Formally, a path
constraint is a predicate over evolution paths; for each path, a constraint either allows it or
forbids it. An example of a constraint might be: “Once a component is migrated to a data
center, it must remain in that data center for the rest of the evolution.” For any given evolu-
tion path, this constraint will either hold or fail to hold.

Another important class of analyses is path evaluation functions. While a path con-
straint provides a hard, yes-or-no judgment about the legality of a path, a path evaluation
function instead provides a quantitative assessment about the goodness of a path, for example
by estimating its duration or cost.

These concepts are fairly simple, but there is a substantial formal framework sup-
porting them. To formalize path constraints, for example, we have developed a formal
language based on linear temporal logic. This sort of application of formal methods has
several advantages, the most important of which are precision (by using a formal approach,
we minimize ambiguity, which helps to pin down exactly what project stakeholders mean
when they talk about the project) and automation (when we use a formal approach, we can
develop tools to make it easier to plan and analyze the evolution).

2.3  Architecture Evolution at JPL

Architecture evolution of this kind is particularly common and important at JPL.
Here, missions may last many decades, and software systems must evolve to support them
continuously. The Voyager mission launched in 1977, and 34 years later it is still running —
and transmitting telemetry that must continue to be processed by software on the ground.
The flight software and ground software associated with this mission have required contin-
uous maintenance to keep them up and running for 34 continuous years. This maintenance
entails not only routine collection and analysis of telemetry, but also occasional software
evolution as well as responses to sporadic anomalies, as in 2010 when a flight software glitch
left Voyager 2 nonfunctional until project engineers could repair the software, allowing it to
continue reporting on its journey out of our solar system [3]. The Voyager probes are ex-
pected to continue transmitting telemetry at least until 2025, when they will at last have
insufficient power to support any of their instruments, for a total mission length of nearly
half a century [14].

But long mission durations are only one reason that software evolution is so im-
portant to JPL. Perhaps even more significant are the multimission software systems that JPL
maintains. Today, JPL is constantly maintaining the software for a wide array of missions; at
the time of this writing, JPL currently has 87 active missions, according to its website —from
the Active Cavity Irradiance Monitor Satellite to the Wide-Field Infrared Survey Explorer
[13]. Each of these missions has plenty of custom software written for it, but most of them
also make use of multimission software —software that is shared among several missions.
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JPL takes a sort of product line approach to multimission software; it develops software for
multimission use, then adapts it for each mission. Of course, multimission software lasts
longer than a typical single mission, and it also has greater evolution needs. As new missions
make use of a multimission platform, the platform must evolve to support the new capabili-
ties and qualities that the new missions require. Over a long period of time, a multimission
system can change drastically, ultimately to the point where it bears little resemblance to its
ancestral form.

The best example of such a multimission system at JPL is the Advanced Multimis-
sion Operations System (AMMOS), the title character of this report. AMMOS is the ground
software system used for JPL’s deep-space and astrophysics missions [11]. It was developed
beginning in 1985, with the goal of providing a common platform to allow mission operators
to manage ground systems at lower cost than would be possible by building mission-specific
tools, without compromising reliability or performance [8]. The system has been used for
many prominent NASA missions, and continues to be used today [15].

Architecturally, AMMOS is a system of systems; although it functions as a coherent
whole with a common purpose, it is composed of disparate elements, each of which has its
own engineers, its own users, and its own architectural style. Among the systems that make
up AMMOS are elements responsible for uplink and downlink of spacecraft telemetry, for
planning command sequences, for processing spacecraft telemetry, for navigation, and so on
[11].

AMMOS has served JPL well for many missions, but it is an aging system, and the
limitations of its architecture are now becoming apparent [16]. The architecture is resistant to
evolution and expensive to maintain. The current system suffers from architectural incon-
sistencies and redundancies and lacks a coherent overarching architecture. Requirements
changes often necessitate modifications that span many subsystems, and the system relies on
large amounts of “glue” code —adapters and bridges connecting different parts of the system
in an ad hoc way that makes maintenance difficult.

Now, ongoing architecture modernization efforts aim to address this situation by re-
architecting AMMOS in a way that makes use of modern architectural styles and patterns
[16, 23]. This will allow easier, less expensive maintenance and evolution of AMMOS in the
future and also facilitate easier customization of AMMOS for individual missions. The goal
is to develop a modern deep-space information systems architecture based on principles of
composability, interoperability, and architectural consistency.

3 EVOLUTION DESCRIPTION

In this project, I focused on one element of AMMOS that is of particular interest from
the standpoint of software architecture evolution. Confining my work to the evolution of a
single AMMOS element over a relatively brief interval of time, rather than attempting to
capture a broader view of the evolution of AMMOS, was necessary to achieve my goals
within the ten-week duration of my internship at JPL. To achieve a full understanding of the
evolution, develop a meaningful evolution description, and produce compelling evolution
analyses would not have been possible had I selected a broader scope.

The AMMOS element on which I chose to focus is the one responsible for mission
control, data management and accountability, and spacecraft analysis (MDAS) [12]. The
MDAS element was an attractive choice for several reasons. First, it was undergoing a major
restructuring to meet specific goals. Second, it had an explicit initial software architecture,
and the target architecture was also reasonably well understood. Third, it presented interest-
ing tradeoffs and unanswered questions that might be usefully addressed by an architecture
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evolution analysis. Fourth, I had good access to staff who were familiar with the system and
with the evolution, who could provide architectural information beyond that available in
official documentation.

The MDAS element has a number of responsibilities, but one of the most important
is to process, store, and display telemetry and other mission data from deep-space opera-
tions [12]. Prior to the Mars Science Laboratory (MSL) mission, this responsibility was
fulfilled by an assortment of different subsystems, including the Data Monitor and Display
(DMD) assembly; the Tracking, Telemetry, and Command (TT&C) system; and a number of
others [10]. For the MSL mission, a new system was developed to supplant this complex of
systems: the Mission Data Processing and Control System (MPCS) [6].

MPCS was originally developed as a testing platform modeled after the ground data
systems for the Mars Exploration Rovers; later it was promoted to support operations for
MSL [6]. Engineers are now adapting and refining the architecture of MPCS for multimission
use. In this section, I describe the current MPCS architecture (as used by MSL), the motiva-
tions for evolving it, and the planned future architecture.

3.1 Initial Architecture

MPCS has an event-driven message bus architecture. All the major components of
the system communicate via a Java Message Service (JMS) message bus [6]. ]MS is a pro-
gramming interface that provides for reliable, asynchronous communication among soft-
ware systems [9]. This promotes loose coupling of software components without compro-
mising reliability. Components can be attached to or detached from the message bus freely
(by subscribing to or publishing the appropriate kind of event), provided that they adhere to
application protocols and do not violate architectural constraints, allowing for plug-and-play
reconfiguration of the system. The components are Java-based and platform-independent;
the interfaces by which they communicate are based on XML [6].

This event-driven, bus-mediated architecture gives MPCS a degree of architectural
flexibility. That is, there is not really any one “MPCS architecture;” rather, MPCS can be
configured in different ways to achieve different goals. At its most flexible, MPCS can be
regarded a loose confederation of tools rather than a cohesive system with a fixed design.
However, MPCS does have a rather stable infrastructure of core components that are gener-
ally connected in a well-defined way, so for most purposes we can treat MPCS as a system
with a stable platform and a fixed set of variation points, and indeed this is how we will treat
MPCS here.

An important example of the architectural variability of MPCS is that it is deployed
with quite different configurations in different environments. MPCS is used in several
environments —not only mission operations, but also flight software development; system
integration; and assembly, test, and launch operations (ATLO)—and there are significant
differences in architectural configuration among the environments [6]. For flight software
development, for example, MPCS can be used to issue commands to the flight software
under development; in operations, however, commanding features are delegated to a
different system called CMD, which is external to MPCS and indeed external to AMMOS (it
is a subsystem within JPL’s Deep Space Network).

The most important components of MPCS are:

e The aforementioned message bus.

e The telemetry processing subsystem of MPCS, which is called chill_down [1] (chill
is a code name for MPCS [24], and down is for downlink). This component takes as
input an unprocessed telemetry stream from a spacecraft (or other telemetry
source, such as a simulation environment), performs frame synchronization and
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packet extraction, and processes packets to produce event verification records and
data products [1].

e The commanding component of MPCS, which is called chill up (up for uplink)
[4, 5]. This component transmits commands to the flight software (or simulation
environment). Currently, chill_up is used only in the flight software development
and ATLO environments, not in operations.

e The MPCS database, a MySQL database, used for storing telemetry as well as
some other information, such as logs and commanding data [5]. This database is
queried by a number of analysis components.

e The monitoring interface, called chill_monitor, used for real-time display of telem-
etry [4, 5]. There are generally many instances of chill_monitor for a single instance
of MPCS, as many mission operators may be monitoring telemetry simultaneously.

e A variety of MPCS query components, with names like chill_get frames,
chill_get_packets, chill_get_products, and so on [5]. These programs retrieve data
from the database and output the data in a standard format.

Together, these components effectively form a standard MPCS workflow. Commands are
issued by chill_up and conveyed to the flight software (or simulation environment), which
carries out the commands; the flight software produces telemetry, which is processed by
chill_down. The chill_down component stores the processed telemetry to the MPCS database
(where it is queried by the MPCS query components) and transmits messages about the
processed telemetry to the message bus (where it is displayed by chill_monitor). Although
MPCS is flexible enough to be configured in many different ways, this workflow describes
the way MPCS works most of the time, in typical environments. In section 5, I will show an
architectural diagram of MPCS illustrating these components and how they connect.

3.2 Impetus for Evolution

It is believed that MPCS will serve adequately for the MSL mission. However, as
MPCS is developed for reuse in future missions, engineers face the need to evolve the system
to improve qualities such as performance and usability, support additional needed capabili-
ties, and better integrate with other ground data systems. In my work this summer, I focused
on two particular proposed features of MPCS that project architects hoped to introduce in
future versions: integrated commanding (ICMD) and timeline integration.

ICMD is motivated by the NASA principle “test like you fly.” That is, NASA aims to
make system-testing environments as similar as possible to actual spaceflight operations. As
we have seen, one of the most salient architectural characteristics of MPCS is that it takes
different forms in different environments. In particular, there are important architectural
differences between the testing environment (ATLO) and the spaceflight operations envi-
ronment. The ICMD effort aims to bring the operations environment more in line with the
ATLO environment.

The main difference between the testing configuration of MPCS and the operations
configuration of MPCS is commanding. In ATLO, the chill_up component of MPCS is
responsible for issuing commands to the spacecraft. In operations, the responsibility of
issuing commands is excised from MPCS entirely; instead, the CMD system is responsible
for issuing commands. ICMD will change the operations environment to look more like
ATLO; the chill_up component of MPCS will now issue commands in all environments.

Timelines are a new data structure proposed for storing streams of time-oriented da-
ta throughout AMMOS. A “timeline” is exactly that: a linear sequence of events with associ-
ated times, in chronological order. Many of the kinds of data that JPL handles on a day-to-
day basis fit naturally into this model: telemetry, command sequences, and others. The
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timeline proposal defines specific formats for storage and transmission of timelines, and also
describes the architectural infrastructure necessary to support them. Timelines are expected
to be useful for many purposes, but one of the most important is comparison of actual
telemetry with expected telemetry. Mission operators need this capability all the time
(comparing an observation with a theoretical prediction is one of the most basic require-
ments in science), but currently comparing expected and actual telemetry is a manual,
laborious operation. Supporting timelines will require substantial architectural infrastruc-
ture. Although the basic idea is not complex, there are very stringent performance require-
ments; processing timelines must be very fast. Thus, for example, a specially engineered
timeline database is planned, which will be designed specifically for efficient storage and
retrieval of timelines.

The introduction of timelines will have ramifications for many of the AMMOS ele-
ments, including MPCS. Currently, MPCS stores telemetry information in a MySQL data-
base. Ultimately, this database will be rendered obsolete by the introduction of timelines.
After timelines are integrated into MPCS, telemetry will be stored in an AMMOS-wide
timeline management system, and the MySQL database will eventually be retired. Other
parts of MPCS will also be affected by the introduction of timelines; for example, the sub-
sytem for mission planning and sequencing is likely to see changes as well.

3.3 Target Architecture

The main differences between the end state of the evolution and the initial state are
greater homogeneity among deployment environments (supporting the “test like you fly”
philosophy) and integration with the new timeline infrastructure (improving on the usability
of the current architecture).

In the end state, chill_up will be used for commanding in all environments, includ-
ing spaceflight operations. The CMD system will continue to exist, but will no longer be the
originator of commands in the operations environment. Instead, chill_up will originate
commands and convey them to CMD, which will prepare them for uplink.

More precisely, chill_up will not directly send commands to CMD, but will instead
transmit references to commands that it has stored in a command repository; CMD will then
access this repository to read the actual commands. Once timelines are introduced, this
command repository will become obsolete, as command sequences will be stored as time-
lines and will therefore be stored by the timeline management system. This is an important
point of interaction between the two pieces of our evolution, ICMD and timelines.

In addition to storing commands, the timeline management system in the end state
will be responsible for storing channelized telemetry. Thus, the target architecture lacks the
MySQL database that exists in the initial architecture, and the usages of that database by
other MPCS components are replaced by connections with the timeline management system.
The timeline management system will be external to MPCS, so these connections will be
external collaborations rather than internal connections.

4 APPROACH

I spent the early weeks of my internship gathering information. My first goal was to
familiarize myself with the particulars of the various elements of AMMOS and the plans that
were in place for evolving them. I did this by reviewing project documents and speaking
with project personnel.

My second goal was to select an evolution to study. At the beginning of my project,
we had not yet selected the specific evolution that I described in section 3. On the contrary, a
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diverse array of options was under consideration. I worked together with my mentor and
project contact at JPL to select an appropriate evolution. Among the options were past
evolutions (i.e., those that had already been finished and whose outcome was therefore
known); current evolutions (i.e., those which were ongoing); and future evolutions (i.e.,
those that were under consideration to occur in the future). We ultimately selected an
evolution that was in progress but had only been underway for a short time. Picking a
current evolution had the advantage of being of greatest relevance to JPL. Another ad-
vantage was that there were ample resources for learning about the evolution; it was easy to
find project personnel who could share accurate, timely information about evolution plans.
If we had selected a past evolution, it is likely that documentation would have been difficult
to find, and there would have been few current personnel who were familiar enough with
the evolution to provide useful information. On the other hand, if we had selected a future
evolution for which few firm plans had been made, we would have had to engage in sub-
stantial speculation to construct an evolution graph.

Another important choice was the scope of the evolution, in terms of both time (i.e., a
long evolution versus a short one) and breadth (i.e., the evolution of a small subsystem
versus the evolution of a large chunk of AMMOS). We could have picked a much larger
scope than we did —for example, by studying the overall evolution of AMMOS rather than
focusing on MPCS, or by trying to look further into the future. However, given the short
duration of my internship, it would have been difficult to gather sufficient information about
a broader evolution to produce a useful model capable of saying anything useful about the
evolution —one that was more than a superficial overview. A more narrowly scoped study,
on the other hand, would have shown changes that were too minor to be interesting.

Once I had selected an evolution to study, the next task was to model it. In previous
work at Carnegie Mellon University, we have modeled architecture evolution using research
languages and research tools. One of my aims in this project was to evaluate the practicality
of implementing our approach to architecture evolution analysis while using commercial
languages and tools —in particular, those already in use by the software organization under
study. At JPL, the dominant language used for modeling systems is SysML, the Systems
Modeling Language, and the dominant modeling tool is MagicDraw, a commercial tool that
can produce SysML models. In the rest of this section, I will describe SysML and MagicDraw
and explain how I adapted our approach to architecture evolution to this environment.

41 SysML

SysML is a specialization of an older and better-known modeling language called
UML (the Unified Modeling Language), which was developed for modeling software
systems. UML, originally standardized in 1997 and revised many times since, is a general-
purpose modeling language that has proved very popular in the software engineering
community. UML provides an array of different diagram types, which allow a software
system to be represented from different perspectives —for example class diagrams (used for
describing the structure of a software system’s source code), deployment diagrams (used for
describing the hardware used by a software system), and sequence diagrams (used for
describing how objects in a software system communicate).

SysML is a specialization of UML for the domain of systems engineering (rather than
software engineering specifically). SysML is formally defined as an extension, or profile, of
UML. SysML arose from collaboration, beginning in 2001, between the Object Management
Group (the standards consortium behind UML) and the International Council on Systems
Engineering (a professional organization of system engineers). In 2003, the Object Manage-
ment Group issued a Request for Proposal for a customization of UML for systems engineer-
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ing [20]. A coalition of industry leaders formed and developed an open-source specification
to meet the Request for Proposal [25]. In 2006, the Object Management Group adopted
SysML as a standard [18]. SysML has since undergone minor revisions; the latest version is
SysML 1.2, released in 2010 [19].

SysML is simultaneously a restriction and extension of UML. It is an extension in the
sense that it adds new syntax and semantics beyond that defined in UML. It is a restriction in
that it excludes many of the elements that do exist in UML, for the purpose of simplifying
the language. SysML takes a subset of the diagram types from UML and repurposes them
for the domain of systems engineering. The class diagrams of UML, for example, become
block definition diagrams (BDDs) in SysML; composite structure diagrams become internal
block diagrams (IBDs).

4.2  Why SysML instead of UML?

UML is used for modeling software systems, while SysML is a profile of UML that is
intended for systems engineering applications; since I was modeling software systems, UML
might seem a more natural choice for this project than SysML. In addition, the tools that I
used for this project supported UML as well as SysML, so using UML would have been
technically feasible. I did consider using UML, but there were several reasons I settled on
SysML.

First, SysML was already heavily used within the organization I worked in at JPL
(and throughout JPL more broadly), including for modeling software systems. Many engi-
neers were already comfortable with SysML and considered it a suitable language for
modeling systems even when those systems had few or no nonsoftware components. By
using SysML, I hoped to make my work more readily accessible and potentially useful to a
JPL audience.

Second, SysML has certain metamodel extensions whose semantics are particularly
well suited to the software systems I was modeling. In particular, SysML introduces flow
ports and item flows, which are ports and connectors through which items may flow. (In the
context of AMMOS, we are principally interested in modeling the flow of data. In systems
engineering contexts, these modeling constructs may represent literal, physical flows, such
as flows of fluid or energy.) These constructs provide a natural way of modeling how
information flows through a software system. Since data flow was a dominant way of
understanding the functioning of some portions of MPCS, it seemed that flow ports and item
flows would be useful for my modeling task. For example, much of the communication in
MPCS occurs asynchronously via a message bus; SysML flow ports and item flows are well
suited to capturing the semantics of this kind of communication.

Third, one of the appeals of SysML is that it is a deliberate simplification of UML. In
addition to providing its own, new metamodel elements, it also reduces the number of
available UML metamodel elements. This simplifies the modeling process by reducing the
number of choices available. The elements available in SysML would be more than sufficient
for my purposes.

Ultimately, the choice between UML and SysML had little practical effect; the project
could have proceeded in essentially the same way had I used UML. I could have used the
same tool (MagicDraw), the same approach to modeling the systems under study, the same
constraint language (OCL), and so on. Indeed, SysML and UML are so closely related that
the architectural representations themselves might have looked much the same; SysML
BDDs could have been UML component diagrams, and SysML IBDs could have been UML
composite structure diagrams. In some respects, the choice between UML and SysML was
thus an academic one.
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4.3  Representing Software Architecture in SysML

SysML was not designed to serve as a formal software architecture description lan-
guage, so I had to establish some conventions so that it could serve as one. I chiefly used two
diagram types for the entire project: BDDs and IBDs. (I also used one package diagram, but
we will come to that later.) In SysML, a block is the basic unit of system structure. A BDD
shows the blocks that appear in the model; an IBD shows the internal structure of a block. I
used BDDs to show the kinds of architectural components in my model and the hierarchical
relationships among them; I used IBDs essentially as conventional software architectural
diagrams, to show the architectural structure of a system. BDDs and IBDs are both represen-
tations of an underlying model.

I tailored my use of the diagram types to show those aspects of the architecture
whose evolution we hoped to model. The most detailed and important diagram that I
produced was an IBD showing the internal structure of MPCS. I also produced a set of three
IBDs that served essentially as context diagrams showing how MPCS was deployed in the
three different environments (flight software development, ATLO, and operations). For
representing this evolution, it was important to see not only the internal changes that were
occurring within MPCS, but also the changes in how MPCS interacted with other systems,
such as CMD. Recall that such changes were key to the overall evolution, so modeling them
was crucial to providing a complete, useful representation of the evolution.

Although my use of SysML was guided by conventions that I established for myself
to match a particular conception of software architecture, it is important to emphasize that I
remained faithful to the semantics and conventions of SysML. That is, I did not wantonly
abuse the language to fit a particular paradigm; instead, I made use of those elements of the
language which were already compatible with that paradigm. In fact, my use of block
definition diagrams and internal block diagrams is similar to examples in the SysML specifi-
cation [19]. See particularly section B.4.5 of the specification: block definition diagrams such
as figure B.18 show the kinds of components that appear in the system, while internal block
diagrams such as figure B.19 show the details of how these pieces fit together to form the
architecture of the system (cf. figures 1 and 2 in this report).

Many diagrams of the initial system (MPCS as it existed in MSL) already existed be-
fore I began my internship —including one representation of the system in MagicDraw with
SysML. (Some of these diagrams are publicly available; see, e.g., [4-6].) I studied these
diagrams carefully but ultimately decided to create my own diagram rather than reusing any
of these. There were a few reasons for this. First, in creating my own diagram, I could ensure
that it was consistent with formal software architecture principles and amenable to the kinds
of analysis that I wanted to do. Second, there were a number of inconsistencies among the
existing diagrams, and creating my own diagram from scratch was simpler than attempting
to account for all these discrepancies. Third, my representation of MPCS would differ from
previous diagrams in ways that were important for technical reasons, as we will see in
section 5.1.

4.4 Modeling Software Architecture Evolution with MagicDraw

Modeling software architecture in SysML is fairly straightforward; after all, SysML is
a profile of UML, which is specifically designed for software architecture representation.
More interesting is the question of how to model architecture evolution effectively. Recall that
we model an evolution as a graph, in which the nodes are intermediate architectures and the
edges are transitions. The first step in representing an architecture evolution, then, is figur-
ing out how to represent the nodes. Of course, the simplest strategy would be to create one
MagicDraw project for each intermediate state. A better idea, however, is to include all the
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intermediate states, and hence the entire evolution graph, in a single project. With every-
thing in one project, it becomes possible to write evolution constraints and analyses with
existing tools, simply by using the model constraint and analysis facilities already provided
by the tool.

More specifically, I placed each intermediate state in its own package. A package is a
UML construct (also available in SysML) that encapsulates related entities. Placing the
intermediate states into different packages allows them to be as isolated as necessary, while
still existing within the same project so as to accommodate analyses of the entire evolution
graph. In addition, we can represent the packages themselves in a package diagram; then we
can represent the transitions between them by relationships among the packages. Finally, if
we wish, we can add annotate these packages and relationships with additional information
to facilitate analysis, such as node properties and edge properties.

4.5 Representing Model Transformations

The problem with having a separate representation for each intermediate state is that
it can be a maintenance nightmare. Since what I was modeling was a gradual evolution
rather than an outright retirement and replacement of a system, all the states look mostly the
same, except for those pieces that are evolving. Thus, modeling the evolution graph required
me to produce many nearly identical packages. I could have created this evolution graph
model very easily by simply cloning the initial state and modifying it. That is, after first
representing the initial state, I could have copied it, pasted it, and modified it to create the
next state; then done likewise for the next state; and so on. But maintaining this evolution
graph would have been painful.

Suppose that after I had finished representing all the states, I had noticed a mistake
in the initial architecture that affected all the other states as well (since they were generated
by cloning the initial state). To address the problem, I would have had to fix each state by
hand. In the evolution graph I ultimately produced, there were seven states; a more broadly
scoped evolution could have many more. Thus, fixing problems in this way would be
laborious.

Instead of this copy-and-paste approach, I decided to model the structural transfor-
mations themselves in such a way that they could be applied automatically. Rather than
generating intermediate states by hand and applying the evolution steps by hand, I would
specify the structural transformations needed to generate the intermediate states automati-
cally. Then, if the initial state changes, the intermediate states can be regenerated instantly,
so fixes need only be applied in one place instead of many. This is analogous to the way that
most revision control systems use delta encoding to store file versions (storing diffs between
versions rather than a complete copy of every version of every file) or to the way that video
compression works (by storing differences between frames, taking advantage of the typical
similarity of nearby frames, rather than storing a complete copy of every frame).

This approach accords well with the model of architecture evolution I described in
section 2. There, I discussed architectural operations, which capture the structural transfor-
mations involved in evolution steps, as well as other information to support analysis. The
transformations that I employed in this project fulfilled the same role here (except without
providing metadata to support analysis).

I implemented these transformation specifications as macros in MagicDraw.
MagicDraw supports the definition of fairly sophisticated macros that can alter both the
model and the presentation of its diagrams. To do so, it exposes a rich Java API for creating
and modifying model elements and presentation elements. Macros are written in a scripting
language and compiled to Java bytecode.
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There are several languages in which MagicDraw macros can be written: Groovy,
BeanShell, JavaScript, JRuby, and Jython. All of these are dynamically typed programming
languages that can compile to Java bytecode and run on the Java platform, so the choice
among them is largely one of personal preference. I selected Groovy, whose syntax is based
on Java but is rather laxer (e.g., semicolons and type declarations are unnecessary) and also
introduces many additional features (e.g., for functional programming).

In principle, one could use a UML transformation standard such as QVT for this
purpose, rather than a script using a proprietary API like MagicDraw’s. For this project, I
decided to use macros rather than QVT for two reasons. First, MagicDraw has no built-in
support for QVT (nor any other model transformation language), and although there is an
official MagicDraw plug-in for QVT, it is immature, somewhat buggy, and not well docu-
mented. Second, using macros allowed me to transform not only the model, but also the
diagrammatic presentation of that model. With QVT I would have been limited to the
former; I could have transformed the model automatically, but still would have had to
update the diagrams by hand, eliminating much of the benefit of the automated approach.

4.6 Modeling Constraints and Analyses with OCL

Constraints and analyses are important parts of our model of software architecture
evolution. Because of the short duration of my internship, I did not have an opportunity to
develop a rich variety of constraints and analyses for the evolution that I studied. However,
with the entire evolution graph represented in a single model, it should be possible to
represent constraints and analyses as OCL constraints over the model.

OCL, the Object Constraint Language, is a declarative language for specifying rules
of models in UML (and other modeling languages governed by the same metamodel as
UML) [17]. OCL was originally developed to annotate UML models with additional con-
straints that are inexpressible in UML; however, it can also be used to express constraints
over UML models—to judge whether a particular UML model satisfies some constraint. This
makes it suitable for expressing evolution constraints, given that our entire evolution graph
is in one model.

In principle, I believe that it should even be possible to develop an algorithm for
translating, or compiling, constraints in our temporal-logic-based constraint language into
OCL. Thus it would be possible to develop, say, a MagicDraw plug-in that allows architects
to express constraints in this temporal logic, then transparently compiles them to OCL and
checks them against the model. However, I did not have time during my internship to
explore this idea.

Of course, macros are an option here too, and might provide some additional flexi-
bility, at the cost of portability. Macros might be particularly useful for expressing evaluation
functions, as OCL'’s constraint-based approach may be too rigid for quantitative analysis of
the evolution graph.

5 RESULTS

5.1 Representing the Initial Architecture

Figures 1 and 2 show the most important diagrams from my model of the initial ar-
chitecture of MPCS. Figure 1 is an IBD depicting the internal structure of MPCS. This is a
fairly complicated diagram, but there are a couple of features that are particularly worthy of
attention. Note first the major components I mentioned in section 3: the JMS message bus,
the chill_up and chill_down (uplink and downlink) components, and so on. This is a very
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Figure 1: IBD showing the internal structure of MPCS in the initial state
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Figure 3: Package diagram showing the evolution graph; states are represented as packages,
and transitions are represented as dependencies (dashed lines) among the packages
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data-flow-oriented representation of MPCS, which is appropriate given its nature. Most
previous architectural representations of MPCS at JPL have also depicted data flow promi-
nently (e.g., [4-6]).

In other ways, however, this representation is quite different from previous repre-
sentations of MPCS at JPL. The most important difference is that there are some key software
elements that previous representations have depicted as being components of MPCS, but
that I have represented instead as external collaborators of MPCS. To put it another way, I
have drawn the boundary of MPCS quite differently from others at JPL who have represent-
ed the system. In particular, previous representations have included inside MPCS compo-
nents such as MissionSpace, a flight software development simulation environment. I have
instead represented MissionSpace, along with all other environment-specific components, as
external collaborators of MPCS. This has two advantages. First, it makes it easy to depict
MPCS without the difficulty of somehow representing all the different architectural configu-
rations in which MPCS can be deployed. Previous diagrams of MPCS have either addressed
this issue by introducing special notation to indicate MPCS components that exist in some
environments but not others, or ignored it by tacitly representing only one environment. The
second advantage is that these extra components are not really part of MPCS anyway.
MissionSpace, for example, is a third-party off-the-shelf tool, and no one thinks of it as being
a component of MPCS; previous diagrams have included it as an MPCS component appar-
ently for the sake of convenience and diagrammatic simplicity.

Of course, redrawing the boundary of MPCS in this way does not eliminate the prob-
lem of representing multiple environments; it merely pushes the problem outward, so we
can deal with it separately. We still do need to represent the different environments, because
they feature importantly in the evolution under study (the different architectural configura-
tions evolve differently). Therefore, I produced three more IBDs that show how MPCS
interact with its external collaborators (figure 2). Informally, I refer to these as context
diagrams. Properly, neither UML nor SysML has a context diagram type, so I represented
them as IBDs—partial internal representations of the larger system of systems in which
MPCS resides (partial because I do not include all the ground data system elements, but only
the small part of the system that is relevant to MPCS).

These context diagrams show the different environment configurations in a simple
way. In subfigure 2a, we see that in the flight software development environment, MPCS
both issues commands to and processes telemetry from the simulation equipment. Subfig-
ure 2b shows the ATLO environment, which is mostly the same except that now MPCS is
talking to the real spacecraft instead of a simulator. Finally, in subfigure 2c we see the
spaceflight operations context, which is different. Here, a separate system is now responsible
for commanding, while the uplink port on MPCS is unused.

5.2  Intermediate States and Alternative Paths

I ultimately produced an evolution graph with seven states, including the start and
end states. The package diagram in figure 3 shows these states. The mainline evolution path
is the simple, two-transition path from the “Initial” state to the “ICMD” state to the “Final”
state. The first transition is the introduction of ICMD, and the second is the introduction of
timelines. However, a number of alternative paths are possible.

The simplest possible path is to go directly from the initial state to the target state,
skipping the ICMD evolution entirely. That is, rather than first integrating MPCS command-
ing into the spaceflight operations and then integrating timelines, we could go straight to the
target architecture. This makes sense because the ICMD and timeline evolutions interact, and
in some respects the timeline evolution undoes part of the ICMD evolution. The ICMD
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evolution rewires the commanding components of MPCS so that they communicate with the
CMD element of the Deep Space Network; the timeline evolution then rewires these same
components again so that they can communicate with the timeline management system. As
is often the case with evolution paths, there are tradeoffs. Going directly to the target state
would be faster and cheaper than going via the ICMD waypoint. However, it would also be
riskier —not only because the lack of intermediate releases increases the engineering risk, but
also because the lack of stakeholder visibility into the state of the system would increase the
risk of project cancellation.

The other alternative paths in this graph emerge during the introduction of timelines.
One possibility would be to stage the introduction of timelines instead of introducing them
all at once. In particular, the integration of timelines into the uplink portion of MPCS and the
integration of timelines into the downlink portion are independent and could be accom-
plished separately.

Another evolution option has to do with the way that the chill_up component of
MPCS interacts with CMD. In the final state, chill_up does not actually send commands
directly to CMD; instead, it stores commands to the timeline management system, then
passes a references to the command timeline to the commanding element. Instead of inte-
grating timelines into chill_up in this way immediately, we could introduce an intermediate
state in which chill_up makes use of the timeline management system itself but continues to
send commands to CMD directly.

All of these various possibilities, and the complex interactions between them, appear
in figure 3. Behind each of the packages in figure 3 is a complete architectural representation
of the system in that state; here, I have shown only one state, the initial state (figures 1 and
2). In the next subsection, I describe how these intermediate-state representations are gener-
ated.

5.3 Representing Architectural Transformations

As I said in section 4.5, I used macros to specify the architectural transformations
that defined the evolution transitions rather than explicitly specifying each intermediate
state by hand. In addition, I limited the size of the transformation macro by building up the
transformations out of smaller, reusable pieces. For example, in figure 3, the transition from
“ICMD” to “Timelines: chill_up Only” and that from “ICMD” to “Timelines: Telemetry
Only” both involve the introduction of a timeline management system, so rather than specify
the introduction of the timeline management system twice, I defined it in such a way that it
could be referenced by both transitions.

The entire specification for all transformations for the entire evolution graph was on
the order of a thousand lines of Groovy code, including transformations of both the model
and the presentation of all diagrams. (The exact line count is not yet available, because the
final version of the script had not been finished by the deadline of this project report.) The
code is reasonably easy to read and write. For example, here is the code that creates the
timeline management system block (and its ports):

// Create new TMS block in the model
shared.tms = factory.createClassInstance()
shared.tms.name = "TMS"

shared.tms.owner = modelRoot
StereotypesHelper.addStereotypeByString shared.tms, "System"

// Add input port to TMS

shared.tmsInPort = factory.createPortInstance()
shared.tmsInPort.owner = shared.tms
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shared.tmsInPort.name = "in
StereotypesHelper.addStereotypeByString shared.tmsInPort, "FlowPort"

SysMLHelper.setDirectionFlowPort shared.tmsInPort, "in"

// Add output port to TMS

shared.tmsOutPort = factory.createPortInstance()
shared.tmsOutPort.owner = shared.tms

shared.tmsOutPort.name = "out"
StereotypesHelper.addStereotypeByString shared.tmsOutPort, "FlowPort"
SysMLHelper.setDirectionFlowPort shared.tmsOutPort, "out"

5.4 Constraints and Analyses

The evolution graph in figure 3 has eight potential evolution paths. Formalized, au-
tomatically checkable constraints and analyses would be helpful for choosing among these
paths. Unfortunately, I did not have time during my internship to explore fully the con-
straints that are in play in this evolution and the analyses that would be useful for under-
standing it, nor to formalize them. However, I have considered informally the sorts of
analyses that would be helpful here and can speculate about how we might capture them.

Many of the concerns pertaining to the alternative evolution paths appear to be
based on risk. For example, as I mentioned earlier, the primary argument against evolving
directly from the initial system to the target system is that it entails substantial risks. Similar
tradeoffs are involved in many of the other evolution paths. Risk is a special kind of quality
that merits special consideration in a theory of software architecture evolution. At Carnegie
Mellon University, we have also encountered the need for a model of risk in our analysis
framework but have not seriously addressed the topic. The question of how best to model
risk in analyzing architecture evolution remains for future work. In general terms, though,
analyzing risk is likely to entail the construction of some sort of probability model for the
evolution, so that we can model the likelihood that various contingencies will occur and the
effect that those contingencies will have. There is a great deal of existing work on risk
modeling, both for the software industry specifically and also in more general contexts such
as economics, which we could draw on to develop a model of risk in software architecture
evolution. For now, this remains as future work.

Other prominent concerns about this evolution include time, cost, and collaboration.
These are somewhat more straightforward to model. Recall that the transitions in our model
are composed out of smaller, more elementary transformations; if we can understand the
time and cost properties of these elementary transformations, we can compose them to
develop time and cost models for the entire evolution graph. Estimating the time and cost of
these elementary transformations is still not trivial, but it is considerably easier than attempt-
ing to understand the entire evolution graph at once.

These are all “business” issues rather than technical ones. But there are also technical
constraints in play in this evolution, and technical constraints are often simpler to analyze in
purely structural terms than business constraints. In this evolution, we might have a con-
straint that there are always complete pathways by which commands may be uplinked to
the spacecraft and telemetry downlinked; if not, there is a bug in the model. This is a simple
example, but it illustrates how technical constraints may be easily expressible in structural
terms.

6 CONCLUSION

This case study was a successful application of software architecture evolution re-
search to the problem of modeling and analyzing a real-world evolution. This project faced a
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number of obstacles, including the short duration of my internship, my initial unfamiliarity
with the systems under study, and the use of a commercial modeling tool with which I was
unfamiliar. The success of the project in the face of these obstacles suggests that formal
modeling of software architecture evolution is not only possible in theory, but also may be
easier than expected to put into practice in a real-world setting.

Even though I was using an unmodified, off-the-shelf commercial tool, I was able to
implement most of the key elements of our research model of architecture evolution with a
modest amount of effort in a limited period of time. With custom tool support, formal
software architecture evolution modeling could someday be much easier.
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GLOSSARY OF ABBREVIATIONS

AMMOS Advanced Multimission Operations System
The mission operations system for NASA’s deep-space and astrophysics missions

API Application programming interface
An interface defined by a software system to allow other software to communicate with it

ATLO Assembly, test, and launch operations
The project phase in which a spacecraft is built, tested, and launched into space

BDD Block definition diagram
SysML diagram type that shows blocks and the relationship among them

CMD Commanding system
Subsystem of the Deep Space Network responsible for issuing commands

DMD Data Monitor and Display
Assembly that processed and displayed channelized data in “classic” (pre-MSL) MDAS

IBD Internal block diagram
SysML diagram type that shows the internal structure of a block

ICMD Integrated Command
An ongoing evolution that aims to integrate the CMD system with MPCS

JMS Java Message Service
A Java standard supporting message-based communication among software components

JPL Jet Propulsion Laboratory
NASA research and development center operated by the California Institute of Technology

MDAS Mission control, data management and accountability, and spacecraft analysis
AMMOS element that provides for spacecraft monitoring and control

MPCS Mission Data Processing and Control System
MDAS system that processes, stores, and displays telemetry from spacecraft

MSL Mars Science Laboratory
Mars rover mission to launch November 2011 and land August 2012
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NASA National Aeronautics and Space Administration

OCL

QVT

United States agency responsible for space exploration and aeronautics research

Object Constraint Language
Declarative language developed to specify constraints on UML models

Query/View/Transformation
A standard language for defining transformations of UML models

SysML Systems Modeling Language

UML-based modeling language for systems engineering applications

TT&C Tracking, Telemetry, and Command

Legacy system responsible for telemetry operations

UML Unified Modeling Language

Standard general-purpose modeling language for software engineering
XML Extensible Markup Language

Standard format for exchange of structured data
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